职场好文网 >年工作计划

人教版八年级数学教案8篇

在上课之前写好一篇教案至关重要的,教师在写教案时,一定要有着较强的思维逻辑能力,职场好文网小编今天就为您带来了人教版八年级数学教案8篇,相信一定会对你有所帮助。

人教版八年级数学教案8篇

人教版八年级数学教案篇1

初中数学分层教学的理论与实践

天山六中裴焕民

一、分层教学的含义

分层教学是指教师在学生知识基础、智力因素存在明显差异的情况下,有区别地设计教学环节进行教学,遵循因材施教的原则,有针对性地实施对不同类别学生的学习指导,不仅根据学生的`不同选择不同的教法、布置作业,还因材施“助”、因材施“改”、因材施“教”,使每个学生都能在原有的基础上得以发展,从而达到不同类别的教学目标的一种教学方法。

分层教学是“着眼于与学生的可持续性的、良性的发展”的教育观念下的一种教学实施策略。所谓分层教学(同班、同年级分层次教学)就是教师在教授同一教学内容时,对同一个班内不同知识水平和接受能力的优、中、差生以相应的三个层次的教学深度和广度进行合讲分练,做到课堂教学有的放矢,区别对待,使每个学生都在自己原来的基础上学有所得,思有所进,在不同程度上有所提高,同步发展。教师的教学方法应从最低点起步,分类指导,逐步推进,做到“分合”有序,动静结合,并分层设计练习,分层设计课堂,分层布置作业,引导学生全员参与,各得进步。

二、分层教学必要性分析

1、教学现状呼唤分层教学的实施

义务教育的实施使小学毕业生全部升入初中学习,这样,在同一班里,学生的知识、能力参差不齐。但是,应试教育留下的种种弊端抑制了各层次的学生的学习积极性和兴趣,整齐划一的教学要求,忽视了学生之间的差异。为了使教育面向全体学生,减轻部分学生过重的负担,使他们在原有的基础上有所提高,全面提高教学质量,又要使有特长的学生得到更进一步的发展。因此必须实施因材施教,根据不同的学生的具体情况,确立不同的教学目标,采取不同的教学方法,使其个性得到充分发展,为社会培养各种层次的有用之人。

2、新课程改革呼唤分层教学的实施

数学课程改革的核心是课程的实施,而教学是课程实施的基本途径。课程改革归根到底是要转变教师的传统教学观念:包括教学方式的转变——从“教”到

“引”;知识技能掌握理念的转变——从“满堂灌”、“书山题海”到“在亲身经历中体会、理解、掌握知识技能”,强调自我的情感体验;教材观的转变——从“教教材”到“用教材”,教材变成我们引导学生探究知识的工具之一;评价机制的转变——从“唯分数论”到“适合学生自身特点的发展”,这是实施分层教学的原动力,但也是现今新课程改革的一个难点。

在新课改中实施分层教学法的目的是逐步树立学困生学习的信心,激发中等生的学习潜力,扩大优生的学习面。为了适应当前素质教育的需要,我们要采用针对性的矫正和帮助,进行分层教学,分类指导,及时反馈,从中探索出一条教学改革的新路子。

3、学生个体差异的客观存在

心理学的研究结果表明:学生的学习能力差异是存在的,特别是学生在数学学习能力方面存在着较大的差异这已是一个不争的事实。造成差异的原因有很多,学生的先天遗传因素及环境、教育条件都有所不同,还有社会因素(即环境、教育条件、科学训练),这些原因是对学生学习能力的形成起着决定性作用,所以学生所表现出的数学能力有明显差异也是正常的。

学生作为一个群体,存在着个体差异

(1)智力差异。每个学生因为遗传基因的不同,智力的差异是不可避免的。有的人聪明;有的人愚钝,有的人形象思维强;有的逻辑思维强;有的人记忆力超人,但推理能力较差;有的人记忆力较差,却推理能力过人。

(2)学习基础差异。不同的学生在小学的数学状况不一样:有的学生数学十分优秀,有的学生数学学习基本还没入门,两极分化相当严重。

(3)学习品质差异。有的学生学习数学十分认真,有一套自己的数学学习方法,学得轻松愉快;而有的学生因为没有入门,数学学得十分艰难,部分学生甚至对数学学习丧失了信心。

4、分层次教学符合因材施教的原则

目前我国大部分省市的数学教学采用的是统一教材、统一课时、统一教参,在学生学习能力存在差异的情况下,在教学过程中往往容易产全“顾中间、丢两头”。如不因材施教,就使部分学生就成了陪读、陪考。数学能力强的学生潜能得不到充分发挥,能力稍差的学生就可能变成了后进生。有研究结果表明:教师、

家庭、社会、学生、学校等方面的因素都有可能是形成后进生的原因,其中有50%的原因是来自教师在教学中的失误。我们的基础教育既要注意确保学生的共性需求,又要顾及学生的个性发展,所以进行分层教育确有必要。

5、分层次教学能够有效推动教学过程的展??

按照教育家达尼洛夫关于教学过程的动力理论之说,认为只有学生学习的可能性与对他们的要求是一致的,才可能推动教学过程的展开,从而加快学习成绩的提高,而这两者的统一关系若被破坏,就会造成学业的不良后果。学生的学习可能是由他们生理和心理的一般发展水平与对某项学习的具体准备状态所决定的,学生学习可能性的构成因素中既有相对稳定的因素,又有易变的因素。相对稳定的因素,决定了学生在一段时间内可能达到的学习水平的范围,决定了学业不良学生要取得学业进步只能是一个渐进的过程;易变的因素,使学生能在:一定的主客观条件下提高或降低自己的实际可能性水平,从而促进或阻碍学习可能性与教学要求之间矛盾的转化,加快学习成绩提高或降低的速度。由此可见,分层次教学是着眼于协调教学要求与学生学习可能性的关系的一种极好的手段,使它们之间能相适应,从而推动教学过程的展开。

三、分层教学研究的目的意义

捷克教育家夸美纽斯在十七世纪提出来的班级授课制以其大大提高教学效率、加强学校工作的计划性和实际社会效益风行了三百多年后,其固有的不利于学生创造能力的培养和因材施教等种种弊端与社会发展对教育的要求的矛盾越来越尖锐起来。随着科学技术的发展,社会日益进步,教育资源和教育需求的增长和变化,班级授课制在我国做出辉煌的贡献后逐步显现出其先天的严重不足。教师在班级授课制下对能力强的学生“吃不饱”,能力欠佳的学生“吃不消”普遍感到力不从心。分层教学在这种情况下应运而生,成为优化单一班级授课制的有利途径。

1.有利于所有学生的提高:分层教学法的实施,避免了部分学生在课堂上完成作业后无所事事,同时,所有学生都体验到学有所成,增强了学习信心。

2.有利于课堂效率的提高:首先,教师事先针对各层学生设计了不同的教学目标与练习,使得处于不同层的学生都能“摘到桃子”,获得成功的喜悦,这极大地优化了教师与学生的关系,从而提高师生合作、交流的效率;其次,教师在

备课时事先估计了在各层中可能出现的问题,并做了充分的准备,使得实际施教更有的放矢、目标明确、针对性强,增大了课堂教学的容量。总之,通过这一教学法,有利于提高课堂教学的质量和效率。

3.有利于教师全面能力的提升:通过有效地组织好对各层学生的教学,灵活地安排不同的层次策略,极大地锻炼了教师的组织调控与随机应变能力。分层教学本身引出的思考和学生在分层教学中提出来的挑战都有利于教师能力的全面提升。

四、分层教学的理论基??

1、掌握学习理论

布鲁姆提出的“掌握学习理论”主张:“给学生足够的学习时间,同时使他们获得科学的学习方法,通过他们自己的努力,应该都可以掌握学习内容”。“不同学生需要用不同的方法去教,不同学生对不同的教学内容能持久地集中注意力”。为了实现这个目标,就应该采取分层教学的方法。

2、教学最优化理论

巴班斯基的“教学最优化理论”的核心是:教学过程的最优化是选择一种能使教师和学生在花费最少的必要时间和精力的情况下获得最好的教学效果的教学方案并加以实施。分层教学是实现这一目标的有效方式之一。

3、新课标的基本理念

?数学课程标准》提出了一种全新的数学课程理念:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。面向全体学生,体现了义务教育的基础性、普及性和发展性。不仅为数学教学内容的设定指出方向,而且考虑到学生的可持续发展对数学的需求,并为学生学习数学可能产生的差异性留有充分的余地。

五、分层教学实施的指导思想及原则

首先,分层次教学的主体是班级教学为主,按层次教学为辅,层次分得好坏直接影响到“分层次教学”的成功与否。其指导思想是变传统的应试教育为素质教育,是成绩差异的分层,而不是人格的分层。为了不给差生增加心理负担,必须做好分层前的思想工作,了解学生的心理特点,讲情道理:学习成绩的差异是客观存在的,分层次教学的目的不是人为地制造等级,而是采用不同的方法帮助

他们提高学习成绩,让不同成绩的学生最大限度地发挥他们的潜力,以逐步缩小差距,达到班级整体优化。

在对学生进行分层要坚持尊重学生,师生磋商,动态分层的原则。应该向学生宣布分层方案的设计,讲清分层的目的和意义,以统一师生认识;指导每位学生实事求是地估计自己,通过学生自我评估,完全由学生自己自愿选择适应自己的层次;最后,教师根据学生自愿选择的情况进行合理性分析,若有必要,在征得学生同意的基础上作个别调整之后,公布分层结果。这样使部分学生既分到了合适的层次上,又保留了“脸面”,自尊心也不至于受到伤害,也提高了学生学习数学的兴趣。

其次,在分层教学中应注意下列原则的使用:

①水平相近原则:在分层时应将学习状况相近的学生归为“同一层”;

②差别模糊原则:分层是动态的、可变的,有进步的可以“升级”,退步的应“转级”,且分层结果不予公布;

③感受成功原则:在制定各层次教学目标、方法、练习、作业时,应使学生跳一跳,才可摘到苹果为宜,在分层中感受到成功的喜悦;

④零整分合原则:教学内容的合与分,对学生的“放”与“扶”,以及课外的分层辅导都应遵守这个原则;

⑤调节控制原则:由于各层次学生要求不一,因此在课堂上以学、议为主,教师要善于激趣、指导、精讲、引思,调节并控制止好各层次学生的学习,做好分类指导;

⑥积极激励原则:对各层次学生的评价,以纵向性为主。教师通过观察、反馈信息,及时表扬激励,对进步大的学生及时调到高一层次,相对落后的同意转层。从而促进各层学生学习的积极性,使所有学生随时都处于最佳的学习状态。

六、实施分层教学的策略与措施

(一)分层建组

把学生分层编组是实施分层教学、分类指导的基础。学生的分类应遵循“多维性原则、自愿性原则和动态性原则”,教师通过对全班学生平时的数学学习的智能,技能、心理、成绩、在校表现、家庭环境等,并对所获得的数据资料进行综合分析,分类归档。在此基础上,将学生分成好、中、差层次的学习小组,

人教版八年级数学教案篇2

教学目的:

1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。

2、结合学生的实际情况,让学生填写算式。

3、在教学中渗透数的顺序,并进行社会秩序教育。

4、学会与人合作,体会计算的多样化,发展学生思维。

教学重点:

掌握20以内数的顺序。

教学难点:

初步建立数的概念

教学准备:

每组一个数位计数器及40-50根小棒等。

教学方法:

抓问题,用多种游戏,把抽象的数位具体化。

教学步骤:

一、创设情景,寻找关键问题

1、数学课研究数学问题,一些小棒会有什么数学问题。

(每张桌子发40-50根小棒,玩小棒时间为3-5分钟)

2、你发现了什么数学问题。

(目的:练习20以内数的顺序,也可以在玩小棒中发现十根捆一捆)

3、游戏,看谁的手小巧。

老师报数,学生用棒子表示,讨论:快的同学的诀窍。

出示:十根可以捆一捆。

再进行游戏,让学生习惯中把1捆当作10根用。

4、完成:

()个一()个十

试一试,在计数器拔出10

个位只有几颗珠子,怎么办?(10个一是1个10)

在个位拔上一颗珠子,表示1个十,也表示10个一。

二、自主合作,解决数位顺序。

在解决了10是1个十也是10个一后,还能过度试一试在计数器上表示。接下来就是让学生通过自主合作,数位,组成和算式结合,理解11-20各数。

1、11-20各数在计数器上怎么表示呢?

问题提出后,可以组织学生讨论交流,并加以解决,并结合p68的图示表达自己的想法,学生之间互相交流,实现生生互动。

(这儿注意11-20的表达多样,只要求至少一样,方法选择,方法应用应由学生通过自主交流来确定。)

2、

1个十,1个一是1110+1=11

10和11,十位上是1,没有变,个位由0变成1,就是11。

3、15、19、20的数位可重点检查。

(20的数位可由10-20,也可19-20来描述。)

4、小结,从右边起,第一位是个位,第二位是十位,数位不一样,数也不一样,十位上1表示1个十,个位上1表示1个一。

5、练习:(口算)

10+910+810+710+610+5

10+410+39+108+107+10

6+105+104+103+10

三、实践应用,实现知识延伸

1、寻找粗心丢失的数。

游戏报数。(报数时丢一些中间数)

2、开火车顺数

游戏:数数(顺数和倒数)

3、拔珠游戏(师生――生生)

报数13,拔13并写出13,同时说13的含义,还可画珠。

4、p691-6自己完成。

四、课外实践,拓展知识应用。

1、完成10-20各数数位图及小棒图。

2、和父母互说10-20各数组成。

人教版八年级数学教案篇3

教学目标:

知识与技能

1.掌握直角三角形的判别条件,并能进行简单应用;

2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.

3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

情感态度与价值观

敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.

教学重点

运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

教学难点

会辨析哪些问题应用哪个结论.

课前准备

标有单位长度的细绳、三角板、量角器、题篇

教学过程:

复习引入:

请学生复述勾股定理;使用勾股定理的前提条件是什么?

已知△abc的两边ab=5,ac=12,则bc=13对吗?

创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.

这样做得到的是一个直角三角形吗?

提出课题:能得到直角三角形吗

讲授新课:

⒈、如何来判断?(用直角三角板检验)

这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?

就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)

⒉、继续尝试:下面的'三组数分别是一个三角形的三边长a,b,c:

5,12,13;6,8,10;8,15,17.

(1)这三组数都满足a2+b2=c2吗?

(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

⒊、直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

满足a2+b2=c2的三个正整数,称为勾股数.

⒋例1一个零件的形状如左图所示,按规定这个零件中∠a和∠dbc都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?

随堂练习:

⒈、下列几组数能否作为直角三角形的三边长?说说你的理由.

⑴9,12,15;⑵15,36,39;

⑶12,35,36;⑷12,18,22.

⒉、已知?abc中bc=41,ac=40,ab=9,则此三角形为_______三角形,______是角.

⒊、四边形abcd中已知ab=3,bc=4,cd=12,da=13,且∠abc=900,求这个四边形的面积.

⒋、习题1.3

课堂小结:

⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.

人教版八年级数学教案篇4

教学目标

掌握假分数化成带分数的方法,能正确地把假分数化成整数或带分数。

教学重难点

学习重点 理解将假分数化成整数或带分数。

学习难点 掌握假分数化成整数或带分数的方法。

教学工具

ppt课件

教学过程

一、复习引入。(6分钟)

1.判断下面各数哪些是真分数,哪些是假分数。

1/7 3/2 4/9 12/47

教师根据学生的分类,把假分数取出来,让学生观察。

2.观察以上假分数,根据分子能否被分母整除这一特征,假分数可以分为几类?根据学生的汇报板书。

3.揭示课题:这节课我们来一起学习把假分数化成整数或带分数。(板书课题:真分数和假分数(2))。

二、探究新知。15分钟)

教学例3。

1.把 3/3 8/4 化成整数。

(1)课件出示例3(1)的圆形图,提问:分别用分数怎样表示?

(2)讨论:如何把 3/3、8/4 化成整数?

2.把 7/3 、6/5 化成带分数。

(1)提问: 7/3 、6/5 的分子不是分母的倍数,这种情况怎样转化?

(2)交流讨论方法。

(3)学生在练习本上试着把 化成带分数。

3.小结:把假分数化成整数或带分数的方法。

学案

1.根据真分数和假分数的意义进行分类,汇报交流。

2.交流假分数的分类情况。

3.明确本节课的学习内容。

1.(1)看课件,回答用3/3 、8/4 表示。

(2)同桌讨论后交流:①根据分数与除法的关系 3/3 =3÷3=1,②根据分数的意义是1,可以想 3/3 里面有3个1/3 。

2.(1)思考老师的提问。

(2)讨论后交流:① 7/3 是 6/3 和 1/3 合成的数,等于2 1/3 。②也可以用7÷3=2……1,商2是带分数的整数部分,余数1是分数部分的分子,分母不变。

(3)学生独立练习,集体订正。

3.师生共同小结。

三、巩固练习。(14分钟)

1.完成教材第54页“做一做”第2题。

2.完成教材第55页第4,第56页第6题。

四、课堂总结。(5分钟)

1.通过本节课的学习,大家学习了假分数化成整数或带分数的方法,希望同学们学以致用,体会学习数学的乐趣。

2.布置课后学习内容。

课后小结

本节课的教学重点是让学生掌握假分数化成整数或带分数的方法。教学主要采用方法算理,概念结合,帮助学生掌握方法。假分数化成整数或带分数的方法,既可以由分数与除法的关系导出,又可以根据分数的意义来解释假分数化成整数或带分数的结果,结合直观图解释。教学时,先让学生探索交流,感受方法的多样性,在交流的过程中,学生优化各自的想法,教师做“画龙点睛”式的引导。

课后习题

1.写出下面的带分数。

八又七分之三

写作:_____________

十五又六分之??

写作:_____________

二十三又四分之三

写作:_____________

1.读出下面的带分数。

3 1/8读作:_____________

70 3/57读作:_____________

2 4/79读作:_____________

2.写出下面的带分数。

八又七分之三

写作:_____________

十五又六分之??

写作:_____________

二十三又四分之三

写作:_____________

答案:8 15 23

3.填一填。

(1)23÷9= ( )/( )

(2)6= 12/( ) =( )/3 = ( )/5 = 24/( )

(3)3 1/2读作( ),它的分数单位是( ),它有( )个这样的分数单位。

4.做同一种零件,张师傅2小时做17个,李师傅3小时做20个,谁做得快些?(化成带分数再比较)

答:张师傅做得快。

板书

真分数和假分数 (2)

假分数化成整数或带分数的方法:

用分子除以分母,

当分子是分母的倍数时,

能化成整数,商就是这个整数;

当分子不是分母的倍数时,能化成带分数,

商是带分数的整数部分,余数是分数部分的分子,分母不变。

人教版八年级数学教案篇5

设计说明

1.游戏导入,激发兴趣。

“世界通过游戏展现在孩子面前,人的创造才能也常常在游戏中表现出来,没有游戏也就没有充分的智力发展。”用游戏导入新课,可使数学知识在游戏中愉快地、自然地被学生所接受和理解。上课伊始,设计了老师说时间,学生用动作表示时间的游戏,这样不仅唤起了学生对时间的回忆,同时也激发了学生学习新课的兴趣。

2.直观演示与动手操作相结合。

重视直观演示和动手操作,是发展学生思维,培养学生数学能力的有效途径之一。本设计通过课件的直观演示,以及学生动手操作,使学生理解时间与时刻的意义及12时计时法与24时计时法的联系。通过例题进行比较,使学生明确用24时计时法表示时间比较简明、方便,经历由直观到抽象的过程,渗透比较的数学思想。

3.注重从日常生活的各个场景入手,加深对24时计时法的理解和掌握。

24时计时法在生活中有着广泛的应用,与人们的日常生活紧密联系。学生学习这部分知识有着重要的现实意义。整节课以“一天”为主线,贯穿始终。出示主题图展示生活中的一天;通过春节晚会倒计时,了解一天的开始;探究一天有多少个小时。从生活中梳理出数学知识,既能加深学生对知识的理解,又能帮助他们提高学以致用的能力。

课前准备

教师准备 ppt课件 时钟模型

学生准备 时钟模型

教学过程

⊙创设情境,导入新课

1.做游戏,认时间。

师:老师和大家做个游戏,老师说一个时间,大家不用口述,用动作告诉老师这时你在做什么,看谁表演的好。

(1)老师先说一个时刻:中午12时,用动作示范一下。

(2)老师报出下列时刻:凌晨3时、早上6时、上午11时30分、下午4时、晚上9时。(教师边板书边提问)

2.导入。

师:刚才我们说的是生活中常用的表示时刻的方法,叫做12时计时法。如果同学们用12时计时法表示时刻,那么应加“上午、中午、下午、晚上或凌晨”等限制词。有没有一种不用加文字说明的计时方法呢?今天我们就学习一种新的计时法——24时计时法。(板书课题)

设计意图:通过游戏,激活学生的生活经验,分析、归纳出12时计时法的特点,并理解12时计时法在现实生活中的作用。了解12时计时法在实际运用时要有限制词,从而激发学生的认知冲突,寻找表示时间的更为简便的计时方法——24时计时法,引入新知,激发学生学习新知的兴趣。

⊙经历过程,体验感知

1.体验生活中的“一天”。

师:请同学们看大屏幕(课件出示教材82页主题图),引导学生说出在主题图中获得的信息。

(学生汇报小女孩在一天中的作息时间)

2.认识一天的开始——0时。

师:大家知道一天是从什么时刻开始的吗?(学生发表意见,教师不作答复)

师:一天的开始到底是什么时刻呢?还是让我们一起来看一段录像吧!这是春节联欢晚会上大家在一起迎接新年第一天开始的情境。(课件播放倒计时的录像)

师:新年的第一天开始了,钟面上是几时?(12时)是什么时候的12时?(夜里12时)

师:到了夜里12时,就表示这一天结束了,同时又表示新的一天开始了。作为新的一天的开始,我们一般又把夜里12时说成0时。

师:0时我们通常在做什么呢?(睡觉)现在知道一天的开始是什么时刻了吗?一起说说看。(0时)

3.运用课件创设情境,感受一天的经过。

师:一天的时间有多长呢?让我们来感受一下吧!大家可以一边看,一边随着画面和音乐表演。(课件演示)现在是0时,在睡梦中我们开始了新的一天。

师:(钟面显示早晨6时45分)天亮了,太阳升起来了,现在是什么时候?小女孩在做什么?

师:(钟面显示上午10时15分)现在是什么时候?小女孩在做什么?

师:(钟面显示中午12时)时间真快,现在是什么时候?到吃午饭的时间了。

师:(钟面显示下午3时30分)小女孩和同学们在跳绳。

师:(钟面显示下午6时)现在是什么时候?到吃晚饭的时间了。

师:(钟面显示晚上7时25分)现在是什么时候?小女孩在做什么?

师:大家在睡梦中,时间又不知不觉到了什么时候?(夜里12时)到了夜里12时,这一天就结束了,新的一天又开始了!

人教版八年级数学教案篇6

教学目标:

1.使同学通过观察.交汉等活动,探索并掌握长方形和正方形的周长计算方法。

2.使同学通过观察.丈量和计算等活动,在获得直观经验的同时发展空间观念。

3.使同学在学习活动中体会实际生活中的数学,发展对数学的兴趣,培养交往.合作的探究的意识与能力。

设计理念

一、创设生动情境,激发同学探索的动机。

在这节课中,通过创设两只猫比散步路线的长短这样一个实例,设置悬念,让同学在生动有趣的数学情境中开始学习,并且让这个情景贯穿整节课,充沛调动了同学学习的积极性和主动性。

二、巧设数学活动,激励同学主动探究。

在这节课的设计中,我为同学的探究设计了一系列丰富多彩的活动,让同学通过操作.交流等丰富多样的学习方式,提高学习效率,培养同学的创新意识。比方:先说怎样可以知道长方形和正方形的周长,让同学借助与自身的生活经验,初步得同长方形周长计算有哪些战略;通过猜一猜图形的周长初步感知计算方法,培养了数学直觉;用自身的方法算一算图形的周长,让同学感悟解决问题的战略多样化;说说自身比较喜欢哪种计算方法,等等。

三、和时反馈反思,渗透学习战略。

在本课的教学中,对学习过程的和时反馈,对解决问题结束的和时反思,使同学能够正确认识自身的认知过程。比方,通过反馈周长的计算方法,暗示性地让同学注意战略的优化;用试一试的方法教学正方形的周长,让同学感受到知识间的内在联系。全课小结时,通过交流收获与体会,使同学感受到胜利的喜悦。

人教版八年级数学教案篇7

教学目标:

1、理解运用平方差公式分解因式的方法。

2、掌握提公因式法和平方差公式分解因式的综合运用。

3、进一步培养学生综合、分析数学问题的能力。

教学重点:

运用平方差公式分解因式。

教学难点:

高次指数的转化,提公因式法,平方差公式的灵活运用。

教学案例:

我们数学组的观课议课主题:

1、关注学生的合作交流

2、如何使学困生能积极参与课堂交流。

在精心备课过程中,我设计了这样的自学提示:

1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?

2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?

①-x2+y2②-x2-y2③4-9x2

④(x+y)2-(x-y)2⑤a4-b4

3、试总结运用平方差公式因式分解的条件是什么?

4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?

5、试总结因式分解的步骤是什么?

师巡回指导,生自主探究后交流合作。

生交流热情很高,但把全部问题分析完已用了30分钟。

生展示自学成果。

生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)

生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)

师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)

生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。

生5:a4-b4可分解为(a2+b2)(a2-b2)

生6:不对,a2-b2还能继续分解为a+b)(a-b)

师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……

反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的'条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:

(1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:

下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。

(2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。

我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。

确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……

人教版八年级数学教案篇8

?教学目标】

1.使学生知道24时计时法,会用24时计时法表示时刻。

2.初步理解时间和时刻的意义,学会计算简单的经过时间。

3.感受数学与生活的联系,激发学习的热情。

?重点难点】会用24时计时法表示时刻;学会计算简单的经过时间。

?教学过程】

一、认识24时记时法

1.出示情景图,提出问题:同学们,你们知道现在是几点吗?你认识时间吗?

引导学生进行讨论,交流信息。

2.提出问题:它们表示的是几时?

3.组织学生回答相关问题。

4.出示图片场景:

让学生根据场景中的的信息,讨论21:00是几时?并说说生活中,你在什么地方还建过这样表示时间的方法?

5.老师结合实物,帮助学生理解1天内,钟表的时针正好走两圈,一共是24小时,后学生动手操作,感受一天共有24小时。

介绍“24时计时法”在一天里,钟表上的时针正好走两圈,共24小时。通常采用从0时到24时的计时法,叫做24时计时法。

6.了解一日24小时的由来。

二、学习24时计时法的表示方法

1.师出示钟面,引导学生观察钟面上有什么?说说钟面内圈的数表示的是什么?外圈的数表示的是什么?

2.学生观察自己的钟面,讨论外圈的数和内圈的数有什么关系?

3.老师拨时针,让学生说说这个时间怎样表示?(凌晨1时,中午十二时)

4.师再拨时针,让学生学习下午1时到晚上12时用24时计时法的方法(下午1时,下午5时,晚上9时,晚上12时)说说是怎样想的?

5.例题分析:

普通计时法上午7时中午12时下午4时下午6时40分 晚上9时12分

24时计时法19时 23时40分

练后想一想:普通计时法与24时计时法之间有什么联系与区别?

6、同桌互动,一个说一种表示方法,另一个同学回答另一种表示方法。

三、练习巩固

1.学生独立完成:连一连后交流各自的想法。

2.回答问题:

(1)下面的说法正确吗?(打手势)

①18时就是下午8时。

②工人上午8:00上班,下午16:30下班

③深夜12时就是24时,也是第二天的0时。

(2)师出示一个钟面,指针指着一个数(8或10)

想一想:现在钟面上所表示的是几时?”(可能早上8时,也可能晚上8时。)

四、课堂总结

这节课你学到了什么?还有什么疑问?

会计实习心得体会最新模板相关文章:

人教版二年级语文下册教学计划6篇

四年级上册美术教案8篇

2022年二年级体育教案8篇

3年级数学教学计划通用8篇

2022年小学一年级体育教案8篇

四年级数学平行四边形教案8篇

8年级上册音乐教案6篇

二年级数学下学期教学总结8篇

二年级数学下册教学工作总结优质8篇

数学5年级教学计划模板8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    48758

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。